Article 11419

Title of the article

NUMERICAL STUDY OF THE ELECTRIC CHARGE INFLUENCE OF THE DISPERSED PHASE ON THE REFLECTION PARAMETERS OF THE SHOCK WAVE DURING THE PROPAGATION OF SHOCK WAVES FROM SPRAYED MEDIA TO A HOMOGENEOUS GAS 

Authors

Tukmakov Dmitry Alekseevich, Candidate of physical and mathematical sciences, researcher, Institute of mechanics and mechanical engineering - separate structural unit Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences” (2/31 Lobachevskogo street, Kazan, Russia), E-mail: tukmakovDA@imm.knc.ru 

Index UDK

533:6, 533:9;519.688 

DOI

10.21685/2072-3040-2019-4-11 

Abstract

Background. The aim of this work is to study the shock-wave dynamics of electrically charged dusty medium. The effect of the electric charge of the dispersed phase on the dynamics of the carrier medium studied. The research results can used to optimize the technological processes of applying powder coatings in an electric field.
Materials and methods. On the basis of a numerical solution of the equations of multiphase medium dynamics, the process of the movement of a direct shock wave from a dusty medium into a pure gas is simulated taking into account the forces of an electric nature acting on the dispersed component. As well as the force and heat interaction of the mixture components. The carrier medium is described as a viscous compressible heat-conducting gas.
Results. The patterns of the shock-wave flow of a dusty medium in an internal electric field generated by a charged dispersed component of a two-phase medium revealed, and the effect of the electric charge of a dispersed phase on the intensity of the shock wave reflected from the solid surface is investigate.
Conclusions. The effect of the charge of an electrically charged dusty medium is significant only for low shock wave intensities. 

Key words

multiphase medium, shock waves, Navier-Stokes equation, mathematical modeling, electrically charged medium 

 Download PDF
References

1. Nigmatulin R. I. Dinamika mnogofaznykh sred [The dynamics of multiphase medium]. Moscow: Nauka, 1987, part 1, 464 p. [In Russian]
2. Kutushev A. G. Matematicheskoe modelirovanie volnovykh protsessov v aerodispersnykh i poroshkoobraznykh sredakh [Mathematical modeling of wave processes in aero-dispersed and powdery medium]. Saint-Petersburg: Nedra, 2003, 284 p. [In Russian]
3. Fedorov A. V., Fomin V. M., Khmel' T. A. Volnovye protsessy v gazovzvesyakh chastits metallov [Wave processes in gas-suspended particles of metals]. Novosibirsk, 2015. [In Russian]
4. Zinchenko S. P., Tolmachev G. N. Prikladnaya fizika [Applied physics]. 2012, no. 5, pp. 53–56. [In Russian]
5. Dikalyuk A. S., Surzhikov S. T. Teplofizika vysokikh temperatur [Thermophysics of high temperatures]. 2012, vol. 50, no. 5, pp. 611–619. [In Russian]
6. Gavrilova V. A., Kashapov N. F., Fazlyyyakhmatov M. G. Izvestiya vysshikh uchebnykh zavedeniy. Fizika [University proceedings. Physics]. 2014, vol. 57, no. 3-3, pp. 114–118. [In Russian]
7. Mamun A. A., Shukla P. K., Bingham R. Physics Letters A. 2002, vol. 298, no. 2-3, pp. 179–184.
8. Ovsyannikov L. V. Lektsii po osnovam gazovoy dinamiki [Lectures on the basics of gas dynamics]. Moscow; Izhevsk: Institut komp'yuternykh issledovaniy, 2003, 336 p. [In Russian]
9. Gel'fand B. E., Gubanov A. V., Medvedev E. I., Tsyganov S. A. Doklady Akademii nauk SSSR [Reports of the USSR Academy of Sciences]. 1985, vol. 281, no. 5, pp. 1113–1116. [In Russian]
10. Fletcher C. A. et al Computation Techniques for Fluid Dynamics. Berlin: Springer-Verlang, 1988, 502 p.
11. Gubaydullin D. A., Tukmakov D. A. Matematicheskoe modelirovanie [Mathematical modeling]. 2014, vol. 26, no. 10, pp. 109–119. [In Russian]
12. Nigmatulin R. I., Gubaydullin D. A., Tukmakov D. A. Doklady Akademii nauk [Reports of the Academy of Sciences]. 2016, vol. 466, no. 4, pp. 418–421. [In Russian]
13. Tukmakov A. L., Tukmakov D. A. Inzhenerno-fizicheskiy zhurnal [Engineeringphysical journal]. 2018, no. 5, pp. 1–7. [In Russian]
14. Tukmakov A. L., Kashapov N. F., Tukmakov D. A., Fazlyyyakhmatov M. G. Teplofizika vysokikh temperatur [Thermophysics of high temperatures]. 2018, vol. 56, no. 4, pp. 498–502. [In Russian]
15. Sal'yanov F. A. Osnovy fiziki nizkotemperaturnoy plazmy, plazmennykh apparatov i tekhnologiy [Fundamentals of low-temperature plasma physics, plasma devices and technologies]. Moscow: Nauka, 1997, 240 p. [In Russian]
16. Muzafarov I. F., Utyuzhnikov S. V. Matematicheskoe modelirovanie [Mathematical modeling]. 1993, vol. 5, no. 3, pp. 74–83. [In Russian]
17. Krylov V. I., Bobkov V. V., Monastyrnyy P. I. Vychislitel'nye metody [Computational approach]. Moscow: Nauka, 1977, vol. 2, 401 p. [In Russian]

 

Дата создания: 21.04.2020 12:26
Дата обновления: 21.04.2020 15:09